Entire Cyclic Homology of Stable Continuous Trace Algebras
نویسنده
چکیده
A central result here is the computation of the entire cyclic homology of canonical smooth subalgebras of stable continuous trace C∗-algebras having smooth manifolds M as their spectrum. More precisely, the entire cyclic homology is shown to be canonically isomorphic to the continuous periodic cyclic homology for these algebras. By an earlier result of the authors, one concludes that the entire cyclic homology of the algebra is canonically isomorphic to the twisted de Rham cohomology of M .
منابع مشابه
On the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملOn a generalized Connes-Hochschild-Kostant-Rosenberg theorem
The central result of this paper is an explicit computation of the Hochschild and cyclic homologies of a natural smooth subalgebra of stable continuous trace algebras having smooth manifolds X as their spectrum. More precisely, the Hochschild homology is identified with the space of differential forms on X, and the periodic cyclic homology with the twisted de Rham cohomology of X, thereby gener...
متن کاملOn a Generalized Connes -
The central result here is an explicit computation of the Hochschild and cyclic homologies of a natural smooth subalgebra of stable continuous trace algebras having smooth manifolds X as their spectrum. More precisely, the Hochschild homology is identified with the space of differential forms on X, and the periodic cyclic homology with the twisted de Rham cohomology of X, thereby generalizing s...
متن کاملMonoidal Categories, 2-traces, and Cyclic Cohomology
In this paper we show that to a unital associative algebra object (resp. co-unital coassociative co-algebra object) of any abelian monoidal category (C,⊗) endowed with a symmetric 2-trace, i.e. an F ∈ Fun(C,Vec) satisfying some natural trace-like conditions, one can attach a cyclic (resp. cocyclic) module, and therefore speak of the (co)cyclic homology of the (co)algebra “with coefficients in F...
متن کاملHomology of Algebras of Families of Pseudodifferential Operators
We compute the Hochschild, cyclic, and periodic cyclic homology groups of algebras of families of Laurent complete symbols on manifolds with corners. We show in particular that the spectral sequence associated with Hochschild homology degenerates at E and converges to Hochschild homology. As a byproduct, we deduce an identification of the space of residue traces on fibrations by manifolds with ...
متن کامل